Clusterer

template<std::size_t Ndim, std::floating_point TData = float>
class Clusterer

The Clusterer class is the interface for running the clustering algorithm. It provides methods to set up the clustering parameters, initializes the internal buffers and runs the clustering algorithm on host or device points.

Template Parameters:
std::size_t Ndim

The number of dimensions of the points to cluster

Public Types

using value_type = std::remove_cv_t<std::remove_reference_t<TData>>

Public Functions

Clusterer(value_type dc, value_type rhoc, std::optional<value_type> dm = std::nullopt, std::optional<value_type> seed_dc = std::nullopt, int pPBin = 128)

Constuct a Clusterer object.

Parameters:
value_type dc

Distance threshold for clustering.

value_type rhoc

Density threshold for clustering

std::optional<value_type> dm = std::nullopt

Minimum distance between clusters. This parameter is optional and by default dc is used.

std::optional<value_type> seed_dc = std::nullopt

Distance threshold for seed points. This parameter is optional and by default dc is used.

int pPBin = 128

Number of points per bin, used to determine the tile size

Clusterer(Queue &queue, value_type dc, value_type rhoc, std::optional<value_type> dm = std::nullopt, std::optional<value_type> seed_dc = std::nullopt, int pPBin = 128)

Constuct a Clusterer object.

Parameters:
Queue &queue

The queue to use for the device operations

value_type dc

Distance threshold for clustering.

value_type rhoc

Density threshold for clustering

std::optional<value_type> dm = std::nullopt

Minimum distance between clusters. This parameter is optional and by default dc is used.

std::optional<value_type> seed_dc = std::nullopt

Distance threshold for seed points. This parameter is optional and by default dc is used.

int pPBin = 128

Number of points per bin, used to determine the tile size

void setParameters(value_type dc, value_type rhoc, std::optional<value_type> dm = std::nullopt, std::optional<value_type> seed_dc = std::nullopt, int pPBin = 128)

Set the parameters for the clustering algorithm.

Parameters:
value_type dc

Distance threshold for clustering

value_type rhoc

Density threshold for clustering

std::optional<value_type> dm = std::nullopt

Minimum distance between clusters. This parameter is optional and by default dc is used.

std::optional<value_type> seed_dc = std::nullopt

Distance threshold for seed points. This parameter is optional and by default dc is used.

int pPBin = 128

Number of points per bin, used to determine the tile size

template<concepts::convolutional_kernel Kernel = FlatKernel<>, concepts::distance_metric<Ndim> DistanceMetric = clue::EuclideanMetric<Ndim, TData>>
void make_clusters(Queue &queue, PointsHost &h_points, const DistanceMetric &metric = clue::EuclideanMetric<Ndim, TData>{}, const Kernel &kernel = FlatKernel<>{.5f}, std::size_t block_size = 256)

Construct the clusters from host points.

Template Parameters:
concepts::convolutional_kernel Kernel = FlatKernel<>

The type of convolutional kernel to use

concepts::distance_metric<Ndim> DistanceMetric = clue::EuclideanMetric<Ndim, TData>

The type of distance metric to use

Parameters:
Queue &queue

The queue to use for the device operations

PointsHost &h_points

Host points to cluster

const DistanceMetric &metric = clue::EuclideanMetric<Ndim, TData>{}

The distance metric to use for clustering, default is EuclideanMetric

const Kernel &kernel = FlatKernel<>{.5f}

The convolutional kernel to use for computing the local densities, default is FlatKernel with height 0.5

std::size_t block_size = 256

The size of the blocks to use for clustering, default is 256

template<concepts::convolutional_kernel Kernel = FlatKernel<>, concepts::distance_metric<Ndim> DistanceMetric = clue::EuclideanMetric<Ndim, TData>>
void make_clusters(PointsHost &h_points, const DistanceMetric &metric = clue::EuclideanMetric<Ndim, TData>{}, const Kernel &kernel = FlatKernel<>{.5f}, std::size_t block_size = 256)

Construct the clusters from host points.

Note

This method creates a temporary queue for the operations on the device

Template Parameters:
concepts::convolutional_kernel Kernel = FlatKernel<>

The type of convolutional kernel to use

concepts::distance_metric<Ndim> DistanceMetric = clue::EuclideanMetric<Ndim, TData>

The type of distance metric to use

Parameters:
PointsHost &h_points

Host points to cluster

const DistanceMetric &metric = clue::EuclideanMetric<Ndim, TData>{}

The distance metric to use for clustering, default is EuclideanMetric

const Kernel &kernel = FlatKernel<>{.5f}

The convolutional kernel to use for computing the local densities, default is FlatKernel with height 0.5

std::size_t block_size = 256

The size of the blocks to use for clustering, default is 256

template<concepts::convolutional_kernel Kernel = FlatKernel<>, concepts::distance_metric<Ndim> DistanceMetric = clue::EuclideanMetric<Ndim, TData>>
void make_clusters(Queue &queue, PointsHost &h_points, PointsDevice &dev_points, const DistanceMetric &metric = clue::EuclideanMetric<Ndim, TData>{}, const Kernel &kernel = FlatKernel<>{.5f}, std::size_t block_size = 256)

Construct the clusters from host and device points.

Template Parameters:
concepts::convolutional_kernel Kernel = FlatKernel<>

The type of convolutional kernel to use

concepts::distance_metric<Ndim> DistanceMetric = clue::EuclideanMetric<Ndim, TData>

The type of distance metric to use

Parameters:
Queue &queue

The queue to use for the device operations

PointsHost &h_points

Host points to cluster

PointsDevice &dev_points

Device points to cluster

const DistanceMetric &metric = clue::EuclideanMetric<Ndim, TData>{}

The distance metric to use for clustering, default is EuclideanMetric

const Kernel &kernel = FlatKernel<>{.5f}

The convolutional kernel to use for computing the local densities, default is FlatKernel with height 0.5

std::size_t block_size = 256

The size of the blocks to use for clustering, default is 256

template<concepts::convolutional_kernel Kernel = FlatKernel<>, concepts::distance_metric<Ndim> DistanceMetric = clue::EuclideanMetric<Ndim, TData>>
void make_clusters(Queue &queue, PointsDevice &dev_points, const DistanceMetric &metric = clue::EuclideanMetric<Ndim, TData>{}, const Kernel &kernel = FlatKernel<>{.5f}, std::size_t block_size = 256)

Construct the clusters from device points.

Template Parameters:
concepts::convolutional_kernel Kernel = FlatKernel<>

The type of convolutional kernel to use

concepts::distance_metric<Ndim> DistanceMetric = clue::EuclideanMetric<Ndim, TData>

The type of distance metric to use

Parameters:
Queue &queue

The queue to use for the device operations

PointsDevice &dev_points

Device points to cluster

const DistanceMetric &metric = clue::EuclideanMetric<Ndim, TData>{}

The distance metric to use for clustering, default is EuclideanMetric

const Kernel &kernel = FlatKernel<>{.5f}

The convolutional kernel to use for computing the local densities, default is FlatKernel with height 0.5

std::size_t block_size = 256

The size of the blocks to use for clustering, default is 256

template<concepts::convolutional_kernel Kernel = FlatKernel<>, concepts::distance_metric<Ndim> DistanceMetric = clue::EuclideanMetric<Ndim, TData>>
void make_clusters(Queue &queue, PointsHost &h_points, PointsDevice &dev_points, std::span<const uint32_t> batch_item_sizes, const DistanceMetric &metric = clue::EuclideanMetric<Ndim, TData>{}, const Kernel &kernel = FlatKernel<>{.5f}, std::size_t block_size = 256)

Construct the clusters from batched host and device points.

Note

The total size of h_points and dev_points must be equal to the sum of batch_item_sizes

Template Parameters:
concepts::convolutional_kernel Kernel = FlatKernel<>

The type of convolutional kernel to use

concepts::distance_metric<Ndim> DistanceMetric = clue::EuclideanMetric<Ndim, TData>

The type of distance metric to use

Parameters:
Queue &queue

The queue to use for the device operations

PointsHost &h_points

Host points to cluster

PointsDevice &dev_points

Device points to cluster

std::span<const uint32_t> batch_item_sizes

Sizes of each batch item

const DistanceMetric &metric = clue::EuclideanMetric<Ndim, TData>{}

The distance metric to use for clustering, default is EuclideanMetric

const Kernel &kernel = FlatKernel<>{.5f}

The convolutional kernel to use for computing the local densities, default is FlatKernel with height 0.5

std::size_t block_size = 256

The size of the blocks to use for clustering, default is 256

template<concepts::convolutional_kernel Kernel = FlatKernel<>, concepts::distance_metric<Ndim> DistanceMetric = clue::EuclideanMetric<Ndim, TData>>
void make_clusters(Queue &queue, PointsDevice &dev_points, std::span<const uint32_t> batch_item_sizes, const DistanceMetric &metric = clue::EuclideanMetric<Ndim, TData>{}, const Kernel &kernel = FlatKernel<>{.5f}, std::size_t block_size = 256)

Construct the clusters from batched device points.

Note

The total size of h_points and dev_points must be equal to the sum of batch_item_sizes

Template Parameters:
concepts::convolutional_kernel Kernel = FlatKernel<>

The type of convolutional kernel to use

concepts::distance_metric<Ndim> DistanceMetric = clue::EuclideanMetric<Ndim, TData>

The type of distance metric to use

Parameters:
Queue &queue

The queue to use for the device operations

PointsDevice &dev_points

Device points to cluster

std::span<const uint32_t> batch_item_sizes

Sizes of each batch item

const DistanceMetric &metric = clue::EuclideanMetric<Ndim, TData>{}

The distance metric to use for clustering, default is EuclideanMetric

const Kernel &kernel = FlatKernel<>{.5f}

The convolutional kernel to use for computing the local densities, default is FlatKernel with height 0.5

std::size_t block_size = 256

The size of the blocks to use for clustering, default is 256

template<std::ranges::contiguous_range TRange>
void setWrappedCoordinates(const TRange &wrapped_coordinates)

Specify which coordinates are periodic.

Parameters:
wrappedCoordinates

Array of wrapped coordinates, where 1 means periodic and 0 means non-periodic

template<std::integral... TArgs>
void setWrappedCoordinates(TArgs... wrapped_coordinates)

Specify which coordinates are periodic.

Template Parameters:
std::integral... TArgs

Types of the wrapped coordinates, should be convertible to uint8_t

Parameters:
wrappedCoordinates

Wrapped coordinates, where 1 means periodic and 0 means non-periodic

host_associator getClusters(const PointsHost &h_points)

Get the clusters from the host points.

Parameters:
const PointsHost &h_points

Host points

Returns:

An associator mapping clusters and points

AssociationMap<Device> getClusters(Queue &queue, const PointsDevice &d_points)

Get the clusters from the device points This function returns an associator object mapping the clusters to the points they contain.

Parameters:
const PointsDevice &d_points

Device points

Returns:

An associator mapping clusters and points

host_associator getSampleAssociations(Queue &queue, PointsHost &h_points)

Get the sample-to-cluster associations for batched clustering.

Parameters:
Queue &queue

The queue to use for the device operations

Returns:

A device buffer containing the event associations

AssociationMap<Device> getSampleAssociations(Queue &queue, PointsDevice &d_points)

Get the sample-to-cluster associations for batched clustering.

Parameters:
Queue &queue

The queue to use for the device operations

Returns:

A device buffer containing the event associations